كيفية حساب قوة السحب

الكاتب: المدير -
كيفية حساب قوة السحب
"محتويات
معادلة قوة السحب
قوة السحب على كائن ساقط
قوة السحب في السباحة
قوة السحب في الهندسة النووية
حساب قوة السحب
مثال على كيفية حساب قوة السحب

الجميع على دراية بمفهوم قوة السحب ، فعندما تخوض في الماء أو تركب دراجة ، تلاحظ أنه كلما زاد العمل الذي تقوم به ، وأسرع تحركك ، زادت المقاومة التي تحصل عليها من الماء ، أو الهواء المحيط ، وكلاهما يعتبران سوائل من قبل الفيزيائيين ، وفي غياب قوى السحب ، قد يتم التعامل مع العالم لمسافة 1000 قدم في المنزل ، في لعبة البيسبول ، وسجلات عالمية أسرع بكثير في المضمار والميدان ، والسيارات ذات المستويات الخارقة من الاقتصاد ، في استهلاك الوقود.

كما أن قوى السحب ، كونها تقييدية بدلاً من الدفع ، ليست درامية مثل القوى الطبيعية الأخرى ، ولكنها حاسمة في الهندسة الميكانيكية ، والتخصصات ذات الصلة ، وبفضل جهود العلماء ذوي التفكير الرياضي ، من الممكن ليس فقط تحديد قوى السحب في الطبيعة ، ولكن أيضًا لحساب قيمهم العددية في مجموعة متنوعة من المواقف اليومية.

معادلة قوة السحب

يتم تعريف الضغط في الفيزياء ، على أنه القوة لكل وحدة مساحة : P = F / A ، وباستخدام (D) لتمثيل قوة السحب على وجه التحديد ، يمكن إعادة ترتيب هذه المعادلة إلى D = CPA ، حيث C هو ثابت التناسب الذي يختلف من كائن إلى آخر ، كما يمكن التعبير عن الضغط على جسم يتحرك عبر سائل على أنه (1/2) ?v2 ، حيث ? (الحرف اليوناني rho) ، هو كثافة السائل ، و v هي سرعة الجسم.

لذلك ، D = (1/2)(C)(?)(v2)(A)

لاحظ عدة نتائج لهذه المعادلة : ترتفع قوة السحب بالتناسب المباشر مع الكثافة ، ومساحة السطح ، وترتفع مع مربع السرعة ، وإذا كنت تسير بسرعة 10 أميال في الساعة ، فإنك تواجه أربعة أضعاف السحب الأيروديناميكي ، كما تفعل بسرعة 5 أميال في الساعة ، مع بقاء كل شيء آخر ثابتًا. [1]

قوة السحب على كائن ساقط

إحدى معادلات الحركة لجسم ما في السقوط الحر من الميكانيكا الكلاسيكية هي v = v0+  at. في ذلك ، v = السرعة في الوقت t ، v0 هي السرعة الأولية (عادة صفر) ، a هو التسارع بسبب الجاذبية (9.8 م / ثانية 2 على الأرض) ، و t تنقضي الوقت بالثواني.

ومن الواضح في لمحة أن جسمًا يسقط من ارتفاع كبير ، سيسقط بسرعة متزايدة دائمًا إذا كانت هذه المعادلة صحيحة تمامًا ، ولكن ليس لأنه يهمل قوة السحب ، وعندما يكون مجموع القوى المؤثرة على شيء صفرًا ، فإنه لا يتسارع بعد الآن ، على الرغم من أنه قد يتحرك بسرعة عالية ثابتة.

وهكذا ، فإن القفز بالمظلات يصل إلى سرعتها النهائية ، عندما تساوي قوة السحب قوة الجاذبية ، ويمكنها معالجة ذلك من خلال وضعية جسدها ، مما يؤثر على A في معادلة السحب ، والسرعة النهائية حوالي 120 ميلا في الساعة.

قوة السحب في السباحة

يواجه السباحون التنافسيون أربع قوى متميزة : الجاذبية والطفو ، اللذان يتعارضان مع بعضهما البعض في مستوى رأسي ، والسحب والدفع ، اللذان يعملان في اتجاهين معاكسين في المستوى الأفقي ، وفي الواقع القوة الدافعة ليست أكثر من قوة سحب ، تطبقها أقدام السباح ، ويديه للتغلب على قوة سحب الماء ، والتي كما توقعت على الأرجح ، أكبر بكثير من قوة الهواء.

وحتى عام 2010م ، كان يُسمح للسباحين الأوليمبيين باستخدام بدلات إيروديناميكية خاصة ، وكانت موجودة فقط لبضع سنوات ، ثم حظرت الهيئة الحاكمة للسباحة الدعاوى ، لأن تأثيرها كان واضحًا لدرجة أن الأرقام القياسية العالمية تم كسرها من قبل الرياضيين ، الذين كانوا خلافًا لذلك ، (لكن لا يزالون على مستوى عالمي) بدون الدعاوى.

قوة السحب في الهندسة النووية

يعد تحليل قوة الرفع الهيدروليكي ، أحد أهم التحليلات في تصميم مجموعة الوقود ، وتحليل التوافق الهيدروليكي للنوى المختلطة ، ويتم تحفيز القوى الرأسية عن طريق تدفق عالي السرعة ، لأعلى من خلال النواة المفاعل ، وسيكون مسار التدفق لمبرد المفاعل ، من خلال وعاء المفاعل هو :

يدخل المبرد وعاء المفاعل عند فوهة المدخل ، ويضرب على البرميل الأساسي.
يجبر البرميل الأساسي الماء على التدفق لأسفل في الفراغ ، بين جدار وعاء المفاعل ، والبرميل الأساسي ، وتُعرف هذه المساحة عادةً باسم العامل السفلي.
مجموعات الوقود ، حيث تزداد درجة حرارة سائل التبريد ، أثناء مروره عبر قضبان الوقود.
وأخيرًا ، يدخل سائل تبريد المفاعل الأكثر سخونة ، إلى المنطقة الداخلية العلوية ، حيث يتم توجيه فوهة المخرج إلى الأرجل الساخنة للدائرة الأولية ، وينتقل إلى مولدات البخار.

يتم الاحتفاظ بتجميعات الوقود عن طريق مجموعة هيكل التوجيه العلوي ، والتي تحدد الجزء العلوي من النواة ، وهذه التجمعية مصنوعة من الفولاذ المقاوم للصدأ ، ولها العديد من الأغراض ، وتمارس مجموعة هيكل الدليل العلوي قوة محورية على تجميعات الوقود ، (من خلال الينابيع في الفوهة العلوية) ، وبالتالي تحدد الموقع الدقيق ، لمجموعة الوقود في النواة.[2]

ويتم تثبيت شفة تجميع هيكل الدليل العلوي في مكانها ، ويتم تحميلها مسبقًا بواسطة شفة رأس الإغلاق RPV ، وتقوم مجموعة هيكل الدليل العلوي أيضًا ، بتوجيه وحماية مجموعات قضبان التحكم ، والأجهزة الأساسية ، كما يجب حساب القوة السفلية المطلوبة ، لتركيب هيكل التوجيه العلوي في مجموعات الوقود بعناية فائقة.

كما يمكن أن يؤدي عدم كفاية القوة السفلية ، إلى رفع مجموعة الوقود ، من ناحية أخرى ، يمكن أن تؤدي القوة السفلية المفرطة ، إلى انحناء تجميع الوقود ، وهو أمر غير مقبول أيضًا.

حساب قوة السحب

لحساب قوة السحب ، يجب أن نعرف :

معامل احتكاك الجلد ، وهو: CD ، احتكاك = 0.00425
مساحة سطح الدبوس ، وهي: A = ?.d.h = 1169 متر مربع.
كثافة السوائل وهي: ? = 714 كجم / م 3.
سرعة التدفق الأساسية ، والتي تكون ثابتة وتساوي Vcore = 5 م / ث.[3]

من معامل احتكاك الجلد ، الذي يساوي عامل احتكاك Fanning ، ويمكننا حساب عنصر الاحتكاك لقوة السحب ، ويتم إعطاء قوة السحب من خلال :

مثال على كيفية حساب قوة السحب

بافتراض أنه يمكن أن تحتوي مجموعة الوقود ، على سبيل المثال ، على 289 دبابيس وقود (17 × 17 مجموعة وقود) ، فإن عنصر الاحتكاك لقوة السحب ، يكون بترتيب كيلونيوتونات ، وعلاوة على ذلك ، فإن قوة السحب هذه تنشأ فقط ، من احتكاك الجلد في حزمة الوقود ، لكن تجميع وقود PWR النموذجي ، يحتوي على مكونات أخرى ، والتي تؤثر على المكونات الهيدروليكية لتجميع الوقود كالتالي :

قضبان الوقود : تحتوي قضبان الوقود على السموم القابلة للحرق والوقود.
فوهة علوية : يوفر الدعم الميكانيكي لهيكل تجميع الوقود.
فوهة القاع : يوفر الدعم الميكانيكي لهيكل تجميع الوقود.
تباعد الشبكة : يضمن توجيه دقيق لقضبان الوقود.
توجيه أنبوب كشتبان : أنبوب فارغ لقضبان التحكم ، أو الأجهزة الأساسية.

كما هو مكتوب ، فإن المكون الثاني لقوة السحب هو سحب النموذج ، وسحب النموذج المعروف أيضًا باسم سحب الضغط ينشأ بسبب شكل الكائن وحجمه ، ويتناسب سحب الضغط مع الفرق بين الضغوط التي تعمل على الجزء الأمامي والخلفي من الجسم المغمور ، والمنطقة الأمامية.[4]

المراجع"
شارك المقالة:
22 مشاهدة
هل أعجبك المقال
0
0

مواضيع ذات محتوي مطابق

التصنيفات تصفح المواضيع دليل شركات العالم
youtubbe twitter linkden facebook