الاستخدامات الواقعية لنظرية فيثاغورس

الكاتب: المدير -
الاستخدامات الواقعية لنظرية فيثاغورس
"محتويات
الاستخدامات الواقعية لنظرية فيثاغورس
العمارة والبناء
وضع زوايا مربعة
بناء الزوايا الصحيحة
التنقل
المسح
أمثلة تطبيق واقعي لنظرية فيثاغورس
رحلة على الطريق
الرسم على الحائط
شراء حقيبة سفر

نظرية فيثاغورس هي بيان في الهندسة ، يظهر العلاقة بين أطوال أضلاع المثلث الأيمن ، مثلث بزاوية 90 درجة ، ومعادلة المثلث الأيمن هي a2 + b2 = c2، وإن القدرة على العثور على طول أحد الجانبين ، بالنظر إلى أطوال الجانبين الآخرين تجعل نظرية فيثاغورس تقنية مفيدة للبناء ، والملاحة.

الاستخدامات الواقعية لنظرية فيثاغورس
العمارة والبناء

بالنظر إلى خطين مستقيمين ، تسمح لك نظرية فيثاغورس ، بحساب طول القطر الذي يربطهما ، ويستخدم هذا التطبيق بشكل متكرر في الهندسة المعمارية ، أو النجارة ، أو مشاريع البناء المادية الأخرى ، على سبيل المثال ، لنفترض أنك تقوم ببناء سقف مائل.

وإذا كنت تعرف ارتفاع السقف ، والطول المطلوب تغطيته ، ويمكنك استخدام نظرية فيثاغورس للعثور على الطول القطري لمنحدر السقف ، ويمكنك استخدام هذه المعلومات لقطع العوارض ، ذات الحجم المناسب لدعم السقف ، أو حساب مساحة السقف التي قد تحتاج إليها. [1]

وضع زوايا مربعة

تستخدم نظرية فيثاغورث أيضًا في البناء ، للتأكد من أن المباني مربعة ، والمثلث الذي تتوافق أطواله الجانبية مع نظرية فيثاغورس ، مثل مثلث 3 قدم × 4 قدم × 5 قدم ، وسيكون دائمًا مثلثًا صحيحًا ، وعند وضع الأساس ، أو بناء زاوية مربعة بين جدارين ، سيضع عمال البناء مثلثًا من ثلاثة خيوط تتوافق مع هذه الأطوال ، وإذا تم قياس أطوال السلسلة بشكل صحيح ، فإن الزاوية المقابلة لوتر المثلث ستكون زاوية قائمة ، لذلك سيعرف البنائيون أنهم يقومون ببناء جدرانهم ، أو أسسهم على الخطوط الصحيحة.

بناء الزوايا الصحيحة

الطريقة الأكثر وضوحا لاستخدام نظرية فيثاغورس ، هي بناء الزوايا الصحيحة ، ربما تم وضع قواعد الأهرامات المصرية بهذه الطريقة ، فقد كان معروفًا في ذلك الوقت أن المثلث ذو الجوانب 3 و 4 و 5 له زاوية قائمة ،  بالمعنى الدقيق للكلمة ، يستخدم هذا معكوس نظرية فيثاغورس ، ولكن عندما تحدد ثلاثة جوانب مثلثًا فريدًا ، فإنهما متكافئان.

وتساعد نظرية فيثاغورس أيضًا في إيجاد صيغة مفيدة ، لحل المثلثات الأكثر عمومية ، فمن الواضح أن حل المثلثات مهم للمسح ، هذا هو المكان الذي تأتي منه كلمة (علم المثلثات) ، تقسيم المنطقة إلى مثلثات للعثور على مسافة يصعب قياسها مباشرة.

إذا قسمت المثلث إلى قسمين عن طريق رسم عمودي ، من قمة واحدة إلى الجانب المقابل ، فيمكنك تطبيق نظرية فيثاغورس في كل مثلث للعثور على صيغة (قاعدة جيب التمام) ، وللعثور على زاوية معينة من ثلاثة جوانب ، أو الجانب المقابل ل زاوية معروفة نظرا للجانبين الآخرين.

وإذا لم تكن قد رأيت ذلك ، فسيكون من الجيد بالنسبة لك محاولة اكتشافه بنفسك ، فليس الأمر صعبًا ، يجب عليك فقط إدخال مسافتين إضافيتين: دع h يكون ارتفاع المثلث ، و d مسافة العمودية من الزاوية المعروفة ، والقضاء h و d من بعض المعادلات.[2]

التنقل

نظرية فيثاغورس مفيدة للملاحة ثنائية الأبعاد ، حيث يمكنك استخدامه وطولان للعثور على أقصر مسافة ، وعلى سبيل المثال ، إذا كنت في البحر وتتنقل إلى نقطة تبعد 300 ميل شمالًا ، و 400 ميل غربًا ، يمكنك استخدام النظرية للعثور على المسافة من سفينتك ، إلى تلك النقطة وحساب عدد الدرجات إلى الغرب من الشمال ، والتي بحاجة لمتابعة لمتابعة هذه النقطة.

وستكون المسافات بين الشمال ، والغرب ساقي المثلث ، وأقصر خط يربطهما سيكون قطريًا ، ويمكن استخدام نفس المبادئ للملاحة الجوية ، وعلى سبيل المثال ، يمكن للطائرة استخدام ارتفاعها فوق سطح الأرض ، وبُعدها عن مطار الوجهة للعثور على المكان الصحيح ، لبدء النزول إلى ذلك المطار.

المسح

المسح هو العملية التي يقوم بها رسامي الخرائط ، بحساب المسافات ، والارتفاعات الرقمية بين النقاط المختلفة قبل إنشاء الخريطة ، ونظرًا لأن التضاريس غالبًا ما تكون غير متساوية ، يجب على المساحين إيجاد طرق ،  لأخذ قياسات المسافة بطريقة منهجية.

وتُستخدم نظرية فيثاغورس لحساب انحدار منحدرات التلال أو الجبال ، وينظر المساح عبر التلسكوب باتجاه عصا القياس ، على مسافة ثابتة ، بحيث يشكل خط رؤية التلسكوب ، وعصا القياس زاوية قائمة ، بما أن المساح يعرف كلاً من ارتفاع عصا القياس ، والمسافة الأفقية للعصا من التلسكوب ، فيمكنه بعد ذلك استخدام النظرية للعثور على طول المنحدر ، الذي يغطي تلك المسافة ، ومن هذا الطول ، تحديد مدى انحداره.[3]

أمثلة تطبيق واقعي لنظرية فيثاغورس
رحلة على الطريق

لنفترض أن صديقين يلتقيان في الملعب ، ماري موجودة بالفعل في الحديقة ، لكن صديقها بوب يحتاج إلى الوصول إلى أقصر طريق ممكن ، هنا  لدى بوب طريقتان في الذهاب ، يمكنه اتباع الطرق المؤدية إلى الحديقة ، أولًا يتجه جنوبًا 3 أميال ، ثم يتجه غربًا أربعة أميال.

وسيكون إجمالي المسافة التي يتم تغطيتها بعد الطرق 7 أميال ، والطريقة الأخرى التي يستطيع من خلالها الوصول إليها هي قطع بعض الحقول المفتوحة ، والسير مباشرة إلى الحديقة ، إذا طبقنا نظرية فيثاغورس لحساب المسافة ستحصل على: (3) 2 + (4) 2 = 9 + 16 = C2 ?25 = C 5 ميل. = C ، وسيكون السير عبر الحقل أقصر بمقدار ميلين ، من المشي على طول الطرق.

الرسم على الحائط

يستخدم الرسامون السلالم للطلاء على المباني العالية ، وغالبًا ما يستخدمون نظرية فيثاغورس لإكمال عملهم ،  ويحتاج الرسام إلى تحديد الطول الذي يجب أن يكون عليه السلم ، من أجل وضع القاعدة بأمان بعيدًا عن الجدار حتى لا ينقلب.

وفي هذه الحالة يكون السلم نفسه هو الوتر ، على سبيل المثال رسامًا عليه رسم جدار ، يبلغ ارتفاعه حوالي 3 أمتار ، يجب على الرسام أن يضع قاعدة السلم على بعد 2 متر من الحائط ، للتأكد من أنه لن ينقلب ، وما هو طول السلم الذي يحتاجه الرسام لإكمال عمله؟.

يمكنك حسابها باستخدام نظرية فيثاغورس : (3) 2 + (2) 2 = C2 9 + 4 = C2 ?13 = C 3.6 م. = C وبالتالي ، سيحتاج الرسام إلى سلم يبلغ ارتفاعه ، حوالي 3.6 متر.[4]

شراء حقيبة سفر

يريد السيد هاري شراء حقيبة سفر ، ويخبر صاحب المتجر السيد هاري أن لديه حقيبة 30 بوصة ، متوفرة في الوقت الحاضر ، وارتفاع الحقيبة 18 بوصة ، فاحسب الطول الفعلي للحقيبة للسيد هاري ، باستخدام نظرية فيثاغورس ، ويتم حسابها بهذه الطريقة : (18) 2 + (b) 2 = (30) 2 324 + b2 = 900 B2 = 900 – 324 b = ?576 = 24 بوصة 4) ، ما حجم التلفزيون الذي يجب عليك شرائه؟

شاهد السيد جيمس إعلانًا عن تلفزيون في الجريدة حيث يذكر أن التلفزيون بارتفاع 16 بوصة ، وعرض 14 بوصة  ، احسب الطول القطري لشاشته للسيد جيمس ، باستخدام نظرية فيثاغورس ، يمكن حسابها على النحو التالي : (16) 2 + (14) 2 = 256 + 196 = C2 ?452 = C 21 بوصة تقريبًا. = C 5).

والعثور على الكمبيوتر المناسب الحجم : تريد ماري الحصول على شاشة كمبيوتر لمكتبها ، ويمكن أن تحمل شاشة مقاس 22 بوصة ، وقد وجدت شاشة عرضها 16 بوصة ، وارتفاعها 10 بوصات ، هل يتناسب الكمبيوتر مع مقصورة ماري؟  ، استخدم نظرية فيثاغورس لمعرفة : (16) 2 + (10) 2 = 256 + 100 = C2 ?356 = C 19 بوصة تقريبًا. = C.

المراجع"
شارك المقالة:
4 مشاهدة
هل أعجبك المقال
0
0

مواضيع ذات محتوي مطابق

التصنيفات تصفح المواضيع دليل شركات العالم
youtubbe twitter linkden facebook